Exemple : vitesse d'une particule en décantation

Considérons un corps en chute libre dans un milieu tel que l'écoulement est laminaire (c'est-à-dire en l'absence de turbulences). Par exemple, dans une cuve de décantation, une particule tombe lentement. Ce corps est soumis à deux forces :

* une force constante dirigée vers le bas (l'axe est orienté vers le bas)

 F_1 = poids apparent = pesanteur – poussée d'Archimède;

* une force de frottement proportionnelle à la vitesse (son sens est opposé à la vitesse)

$$F_2 = -f v$$

D'après la loi de Newton,

$$F_1 - f v = m a$$

$$F_1 - f v = m v'$$

$$v' + \frac{f}{m} v = \frac{F_1}{m}$$
 où m, F_1 et f sont des constantes
$$et \quad t \mapsto v \ (t) \quad est \ la \ fonction \ \grave{a} \ d\acute{e}terminer.$$

Dans le cas où l'on ne donne pas de condition initiale, on dit que l'on cherche la solution générale.

Définitions

L'équation différentielle ordinaire du premier ordre est dite linéaire si elle est de la forme

$$y' + a (t) y = b (t)$$

en d'autres termes, dans la forme générale ci-dessous, la fonction f est affine en y

$$y' = f(t, y)$$
 avec $f(t, y) = -a(t)y + b(t)$

par exemple,

$$y' + \frac{y}{t+1} = t^2$$

L'équation (différentielle ordinaire du premier ordre) linéaire est dite $\underline{\text{homogène}}$ si la fonction b est nulle:

$$y' + a (t) y = 0$$

L'équation (différentielle ordinaire du premier ordre) linéaire est dite <u>à coefficients constants</u> si les fonctions *a* et *b* sont constantes

$$y' + a y = b$$

Résolution avec Mathematica

Soit à résoudre l'équation différentielle linéaire inhomogène à coefficients constants, avec condition initiale

$$y' + a y = b$$

$$y(t_0) = y_0$$

Clear[y, t, a, b, t0, y0]
Lefface
$$sol = DSolve[\{y'[t] + ay[t] == b, y[t0] == y0\}, y[t], t]$$

$$\text{Lrésous équation différentiel}$$

$$\left\{\left\{y[t] \rightarrow \frac{e^{-at}\left(be^{at} - be^{at0} + ae^{at0}y0\right)}{a}\right\}\right\}$$
c'est-à-dire

$$y (t) = \frac{b e^{at} + (a y_0 - b) e^{at_0}}{a e^{at}}$$

Vérification:

Clear[y, t];

efface

$$y[t_{]} := \frac{b e^{at} + (a y0 - b) e^{at0}}{a e^{at}}$$

Simplify[y'[t] +
$$ay[t] - b$$
]

simplifie

0

Simplify[y[t0]]

simplifie

y0

Equation différentielle linéaire homogène

Soit à résoudre l'équation différentielle linéaire homogène à coefficients constants

$$y' + a y = 0$$

dont on cherche la solution générale y(t).

Le principe de superposition s'énonce comme suit :

- si y(t) est solution, alors, pour toute constante c, la fonction c y(t) est aussi solution;
- si $y_1(t)$, $y_2(t)$ sont deux solutions, alors la fonction $y_1(t) + y_2(t)$ est aussi solution.

La solution générale forme un espace vectoriel. Nous montrerons que cet espace vectoriel est de dimension 1. (voir "Résolution de l'équation linéaire homogène" ci-dessous). En d'autres termes, l'ensemble des solutions est l'ensemble des multiples d'une solution y₁ appelée solution de base

$$\{y\ (t)\ |\ y\ (t)\ =c_1\,y_1\ (t)$$
, $c_1\in\mathbb{R}\}$

On dit aussi que la solution générale s'écrit avec un paramètre. Plus explicitement,

efface

sol = DSolve[{y'[t] + a y[t] == 0}, y[t], t]
[résous équation différentie]
$$\left\{ \left\{ y[t] \rightarrow e^{-at} C[1] \right\} \right\}$$

signifie que la solution générale est l'ensemble des multiples de la fonction de base $t \mapsto e^{-at}$

$$y(t) = c_1 e^{-at}$$
 $c_1 \in \mathbb{R}$

Vérification:

La donnée d'une condition initiale $y(t_0) = y_0$ détermine la valeur de la constante c_1

$$y_0 = c_1 \, \operatorname{\mathbb{C}}^{-a\,t_0} \qquad \Longrightarrow \qquad c_1 = y_0 \, \operatorname{\mathbb{C}}^{a\,t_0} \qquad \text{et} \quad y \, \left(t\right) = y_0 \, \operatorname{\mathbb{C}}^{a\,t_0} \, \operatorname{\mathbb{C}}^{-a\,t} = y_0 \, \operatorname{\mathbb{C}}^{-a\,(t-t_0)}$$

Résolution de l'équation linéaire homogène

Soit à résoudre l'équation différentielle linéaire homogène à coefficients constants

$$y' + a y = 0$$

dont on cherche la solution générale y(t).

Cette équation étant séparable, nous savons la résoudre

$$\frac{dy}{dt} = -ay$$

Une solution est y(t) = 0. Cherchons les solutions non triviales

$$\frac{dy}{y} = -a dt$$

$$\int \frac{1}{y} dy = -a \int 1 dt$$

$$\ln |y| = -at + c_0$$

$$|y| = e^{-at + c_0} = e^{c_0} e^{-at}$$

$$y = c_1 e^{-at} \quad où \quad c_1 = sign(y) \cdot e^{c_0}$$

Finalement, la constante c_1 peut prendre n'importe quelle valeur réelle.

Nous avons ainsi établi que la solution générale de l'équation homogène constitue un espace vectoriel de dimension 1:

$$y_{hom}$$
 (t) = $c_1 e^{-at}$ où $c_1 \in \mathbb{R}$

Résolution de l'équation linéaire inhomogène

Soit à résoudre l'équation différentielle linéaire inhomogène à coefficients constants avec condition initiale

$$\begin{cases} y' + a y = b \\ y (t_0) = y_0 \end{cases}$$

Théorème

Au lieu de chercher d'emblée l'ensemble des solutions de l'équation inhomogène y_{inh}, il suffit d'en déterminer une, n'importe laquelle, indépendamment de toute condition initiale, que nous appelons solution particulière et notons y_{part} . A partir de là, il est facile de construire la solution générale y_{inh} . En effet, on a

$$(y_{inh})' + a y_{inh} = b$$

 $(y_{part})' + a y_{part} = b$
 $(y_{inh} - y_{part})' + a (y_{inh} - y_{part}) = 0$

La différence entre deux solutions de l'équation inhomogène est solution de <u>l'équation homogène</u> <u>associée</u> y' + ay = 0 dont la solution générale est notée y_{hom} .

$$y_{hom} = y_{inh} - y_{part}$$

 $y_{inh} = y_{hom} + y_{part}$

En mots: la solution générale de l'équation inhomogène s'obtient en additionnant

- * la solution générale de l'équation homogène associée
- * une solution particulière de l'équation inhomogène.

Remarque: on montre également que la somme de deux solutions inhomogènes n'est, en général, pas solution du système.

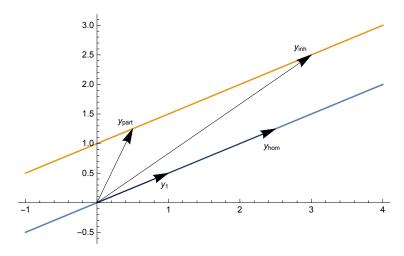
Interprétation géométrique

La solution générale homogène est représentée par une droite qui passe par l'origine. La solution générale de l'équation homogène est un espace vectoriel de dimension 1 (voir $y_{hom} = c \cdot y_1$, $c \in \mathbb{R}$ dans la figure qui suit). L'espace vectoriel y_{hom} est engendré par la solution homogène $\{y_1\}$ qui est une base de l'espace vectoriel.

Une solution particulière de l'équation inhomogène est un y_{part} (voir fig.).

La solution générale inhomogène est représentée par une droite qui est parallèle à la solution homogène. La solution générale de l'équation inhomogène est un espace affine de dimension 1 (voir y_{inh} dans la fig.). L'espace affine y_{inh} est l'image par la translation y_{part} de l'espace vectoriel y_{hom} . La solution particulière joue le rôle de point d'attache de y_{inh} .

$$y_{inh} = y_{part} + c \cdot y_1$$



1-ère étape : solution de l'équation homogène

On commence par résoudre l'équation homogène associée y' + ay = 0 dont la solution générale est

$$y_{hom}\ (t)\ = c_1\ \text{e}^{-a\,t}$$
 ,
$$c_1\in\mathbb{R}$$

2-ème étape : solution particulière inhomogène

On cherche une solution particulière de l'équation inhomogène, n'importe laquelle, sans se préoccuper de la condition initiale. Dans notre situation, cherchons s'il existe une solution y_{part} qui serait constante

$$(y_{part})' + a y_{part} = b$$
 où $(y_{part})' = 0$

$$y_{part} = \frac{b}{a}$$

3-ème étape : solution générale de l'équation inhomogène

D'après un théorème précédent, la solution générale de l'équation inhomogène est

$$y_{\text{inh}} = y_{\text{hom}} + y_{\text{part}} = c_1 \, \text{e}^{-\text{at}} + \frac{\text{b}}{\text{a}}, \qquad c_1 \in \mathbb{R}$$

4-ème étape : solution de l'équation inhomogène satisfaisant la condition initiale

Pour chaque condition initiale donnée $y(t_0) = y_0$, on peut calculer la valeur de la constante d'intégration c_1

$$y_0 = c_1 e^{-at_0} + \frac{b}{a} \qquad \Longrightarrow \quad c_1 = \frac{y_0 - \frac{b}{a}}{e^{-at_0}} = \frac{(ay_0 - b) e^{at_0}}{a}$$

La solution qui satisfait la condition initiale est

$$\begin{split} y_{\text{inh}} &= \frac{(a \, y_{\theta} - b) \, \, \mathbb{e}^{a \, t_{\theta}}}{a} \, \, \mathbb{e}^{-a \, t} \, + \frac{b}{a} = \\ & \frac{(a \, y_{\theta} - b) \, \, \mathbb{e}^{a \, t_{\theta}}}{a} \, \, \mathbb{e}^{-a \, t} \, + \frac{b}{a} = \frac{(a \, y_{\theta} - b) \, \, \mathbb{e}^{a \, t_{\theta}}}{a \, \mathbb{e}^{a \, t}} + \frac{b \, \mathbb{e}^{a \, t}}{a \, \mathbb{e}^{a \, t}} = \frac{b \, \mathbb{e}^{a \, t} + (a \, y_{\theta} - b) \, \, \mathbb{e}^{a \, t_{\theta}}}{a \, \mathbb{e}^{a \, t}} \end{split}$$

Travaux dirigés du § 1.4

1.4- TD 1 Loi de refroidissement d'un corps

A l'instant t = 0, on plonge un corps de température Θ_0 (température initiale) dans un milieu de température O_{as} (température asymptotique). Supposons que la température du milieu demeure constante (par exemple, une tasse de café dans une salle à manger). Comment la température du corps $\Theta(t)$ va-t-elle évoluer de Θ_0 vers Θ_{as} ? Avec Newton, admettons que la variation de température est proportionnelle à la différence entre la température du corps et celle du milieu

$$\Theta' = -k (\Theta - \Theta_{as})$$
 où k est une constante positive

Questions

- a) Résolvez l'équation différentielle avec condition initiale. De quel type d'équation s'agit-il?
- b) Sachant que, dans une pièce à 20 °C, une tasse de café passe de 70 °C à 40 °C en 8 minutes,
 - 1° calculez k;
 - 2° dessinez la fonction $\Theta(t)$;
 - 3° calculez le temps nécessaire pour que le café passe de 70 °C à 20 °C;
 - 4° calculez le temps nécessaire pour que le café passe 70 °C à 20 ° C sachant que la température finale est mesurée avec une incertitude $\Delta\Theta = \pm 0.5$ ° C.
- Revenons au cas général de la question a). Prouvez que la fonction $\Theta(t)$ possède une c) pseudo-période T telle que pour tout t

$$\Theta (t + T) - \Theta_{as} = \frac{1}{2} (\Theta (t) - \Theta_{as})$$

d) Un client pressé désire que son café-crème refroidisse le plus vite possible. De ce but, vaut-il mieux verser la crème dans le café le plus tôt possible (au moment où il est servi) ou le plus tard possible (juste avant de boire)?

1.4- TD 2 Un problème de mélange

Enoncé du problème

Une cuve de volume V contient de l'eau salée à la concentration massique c_0 (c'est-à-dire exprimée en $\frac{kg}{m^3}$). A l'instant t=0, on fait arriver une solution de même nature de concentration massique c_e avec un débit constant D tandis que du liquide quitte la cuve avec le même débit. Un mélangeur assure l'homogénéité du contenu de la cuve. Déterminez c(t) = concentration massique du sel dans la cuve en fonction du temps.

Mise en équation

Notons Q(t) la quantité de matière dissoute dans la cuve

$$c \ (t) \ = \ \frac{Q \ (t)}{V} \hspace{1cm} \Longrightarrow \hspace{1cm} Q \ (t) \ = V \, c \ (t)$$

D'une part, on a

$$\stackrel{\bullet}{Q}(t) = V \stackrel{\bullet}{c}(t)$$
 (I)

D'autre part.

 Dc_e = masse de sel entrant dans la cuve par unité de temps;

D c(t) = masse de sel sortant de la cuve par unité de temps;

d'où

$$\overset{\bullet}{Q}$$
 (t) = D c_e - D c (t) (II)

En comparant (I) et (II),

$$V\overset{\bullet}{c}(t) = Dc_e - Dc(t)$$

Il faut donc résoudre l'équation différentielle avec condition initiale

$$\begin{array}{c}
\bullet \\
c (t) = -\frac{D}{V}c (t) + \frac{D}{V}c_e \\
c (0) = c_0
\end{array}$$

Questions

- a) Résolvez l'équation différentielle avec condition initiale. De quel type d'équation s'agit-il?
- b) Application numérique

$$D = 4 \frac{m^3}{s}$$
, $V = 200 m^3$, $c_e = 0.5 \frac{kg}{m^3}$, $c_0 = 2 \frac{kg}{m^3}$

1° dessinez la fonction c(t);

2° calculez après combien de temps la concentration du sel dans le réservoir tombe

à
$$c=1\frac{kg}{m^3}$$
.

1.4- TD 3

L'exsanguino-transfusion consiste à changer tout le sang d'une personne. On estime qu'il faut changer trois fois la masse sanguine pour obtenir ce changement.

En utilisant un modèle analogue à celui de TD 2, expliquez le phénomène et estimez la quantité résiduelle de sang inchangé.

Remarque: dans la réalité, le sang en circulation n'est pas homogène; alors qu'une partie du sang est immédiatement mélangée, un partie de l'ancien sang est renouvelé avec un certain retard; il faudrait développer un modèle plus complexe.

Liens

Vers les corrigés des exercices:

https://www.deleze.name/marcel/sec2/applmaths/csud/corriges/eq-differentielles/1-4-eq-differentielles-cor.pdf

Vers la page mère : Applications des mathématiques

https://www.deleze.name/marcel/sec2/applmaths/csud/index.html